5 research outputs found

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Transplantation of hematopoietic stem cells and long-term survival for primary immunodeficiencies in Europe: Entering a new century, do we do better?

    No full text
    Background: Hematopoietic stem cell transplantation remains the only treatment for most patients with severe combined immunodeficiencies (SCIDs) or other primary immunodeficiencies (non-SCID PIDs). Objective: To analyze the long-term outcome of patients with SCID and non-SCID PID from European centers treated between 1968 and 2005. Methods: The product-limit method estimated cumulative survival; the log-rank test compared survival between groups. A Cox proportional-hazard model evaluated the impact of independent predictors on patient survival. Results: In patients with SCID, survival with genoidentical donors (n = 25) from 2000 to 2005 was 90%. Survival using a mismatched relative (n = 96) has improved (66%), similar to that using an unrelated donor (n = 46; 69%; P = .005). Transplantation after year 1995, a younger age, B+ phenotype, genoidentical and phenoidentical donors, absence of respiratory impairment, or viral infection before transplantation were associated with better prognosis on multivariate analysis. For nonSCID PID, in contrast with patients with SCID, we confirm that, in the 2000 to 2005 period, using an unrelated donor (n = 124) gave a 3-year survival rate similar to a genoidentical donor (n = 73), 79% for both. Survival was 76% in phenoidentical transplants (n = 23) and worse in mismatched related donor transplants (n = 47; 46%; P = .016). Conclusion: This is the largest cohort study of such patients with the longest follow-up. Specific issues arise for different patient groups. Patients with B-SCID have worse survival than other patients with SCID, despite improvements in each group. For non-SCID PID, survival is worse than SCID, although more conditions are now treated. Individual disease categories now need to be analyzed so that disease-specific prognosis may be better understood and the best treatments planned. (J Allergy Clin Immunol 2010;126:602-10.)Transplantation and immunomodulatio

    Experimental apparatus to study crystal channeling in an external SPS beamline

    No full text
    For the new generation of high intensity hadronic machines as, for instance, LHC, halo collimation is a necessary issue for the accelerator to operate at the highest possible luminosity and to prevent the damage of superconductor magnets.1 We propose an experiment aimed to systematic study of the channeling phenomenology and of the newly observed volume reflection effect. This experiment will be performed for an external SPS beamline and will make use of a primary proton beam with 400 GeV/c momentum and very small ( 3c 3 \u3bcrad) divergence. The advantage of a proposed experiment is precise tracking of particles that interacted with a crystal, so that to determine the single-pass efficiency for all the processes involved. For this purpose, a telescope equipped with high-resolution silicon microstrip detectors will be used. New generation silicon crystals and an extra-precise goniometer are mandatory issues. Main goal of the experiment is to get the precise information on channeling of relativistic particles and, ultimately, on the feasibility of such technique for halo collimation at LHC. In this contribution we review the status of the setting-up of experimental apparatus and its future development in sight of the planned run in September 2006

    SoilTemp: A global database of near-surface temperature

    No full text

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological application
    corecore